Isolation and Characterization of Product-Related Variants in Biotherapeutics CDMO **Email:** hsutton@tanvex.com Haley Sutton, Christian Perez, Teresa Youngberg, **10394 Pacific Center Ct.** Austin Jackson, Anke Hartung, Xuemei Han, Navin Rauniyar Visit Our Website! **San Diego, CA 92121**

Biotherapeutics comprise a diverse class of protein-based drugs with intricate structural and functional characteristics. They exhibit inherent heterogeneity arising from various sources, including manufacturing processes, formulation conditions, and storage. Comprehensive understanding and characterization of these product-related variants are important to ensure the safety, efficacy, and quality of biotherapeutics, as well as for timely regulatory approval. Characterization typically involves isolating charge, size, and hydrophobicity variants, and identifying and quantifying their relative abundances in the drug product. This is achieved using advanced analytical tools such as semi-preparative chromatography, size- and charge-based HPLCs technologies, mass spectrometry (MS), CE-SDS, among others. Additionally, functional assessments are performed using cell-based assays and binding assays to evaluate the impact of variants on bioactivity. Our work highlights various techniques employed to elucidate the complexity of product-related variants in biotherapeutics, with a primary focus on a pegylated cytokine and monoclonal antibody.

Intact Mass Analysis of a PEGylated Cytokine

PEGylation of biotherapeutics increases their molecular weight (MW), resulting in reduced kidney clearance and protection from proteolytic degradation. PEGs are polymers formed by polymerization of ethylene glycol, consisting of ethylene oxide (C_2H_4O) repeating units. Primary structure analysis involves determining the intact molecular mass of the PEGylated protein. RPLC-MS method, with post-column addition of triethylamine, provides both the MW and distribution, known as the polydispersity index (Pni)

methoxy PEG Propionaldehyde -H₂O

 $CH_3 - O - (CH_2CH_2O) - CH_2CH_2CH_2CH_2CH_2R$

 H_2N-R

Characterization of Monoclonal Antibody Variants

Recombinant monoclonal antibodies (mAbs) display structural variants, like post-translational modifications, fragmentation, dimerization, or aggregation. Common modifications include asparagine deamidation, aspartate isomerization, C-terminal lysine loss, N-terminal cyclization, among others. To characterize mAb variants, drug substance, as well as inprocess and forced degraded samples, are used as sources for enriched variants. Once the variants are isolated, several advanced analytical techniques are used for comprehensive structural and functional characterization.

M¹TPLGPASSL PQSFLLK¹⁷CLE QVRK²⁴IQGDGA ALQEK³⁵LCATY K⁴¹LCHPEELVL LGHSLGIPWA PLSSCPSQAL QLAGCLSQLH SGLFLYQGLL QALEGISPEL **GPTLDTLQLD VADFATTIWQ** QM¹²²EELGM¹²⁷APA LQPTQGAM¹³⁸PA FASAFQRRAG GVLVASHLQS FLEVSYRVLR HLAQP

Fig. 1 (A) Mass spectrum of a pegylated cytokine, (B) LC-MS setup with post-column addition of triethylamine via a syringe pump, (C) Mass spectrum of a pegylated cytokine with 5% TEA infusion at 5 µL/min, and (D) Deconvoluted zero-charge spectrum obtained by combining charge state distributions shown in panel C. The average MW of the pegylated cytokine ranges from approximately 38.7 to 41.7 kDa. The mass error of the cytokine conjugated with PEG containing 483 ethylene oxide (EO) units is 0.7 Da. (Theoretical MW of PEGylated cytokine with 483 EO units is 40148.8 Da.)

Peak 1 H—OCH₂CH₂—O—CH₂CH₂CH—M¹TP...LLK¹⁷CLE n=20

Peak 2 H $\left(-OCH_2CH_2 \right) - O - CH_2CH_2CH_2CH - \frac{K^{35}}{L}CATY \frac{K^{41}}{L} \dots L$

Fig. 2 (E) Annotated HCD-MS/MS spectrum of the peptide precursor ion with 20 EO units. Note: The a1 fragment ion indicates PEG attached to Met1, which also undergoes a diagnostic Met side chain loss of 48 Da (CH_3SH).

Isolation and Characterization of Oxidized Variants

Oxidation of methionine can hinder receptor binding and reduce the potency of PEGylated cytokine. Therefore, oxidation is a major product related impurity requiring careful monitoring and control throughout the drug product's manufacturing and storage process. The impact of site-specific oxidation on biological activity was assessed using H_2O_2 -stressed samples. Semi-preparative HPLC was used to fractionate the individual variants followed by analysis using *in-vitro* cell-based potency assays.

 Table 2
 Starting materials and analytical methods used for
mAb product-related variant characterization

Type of Variants			Source of Enriched Variants	Analytical Methods	
		aggregate	mAb DS stressed at 65°C, 7D		
Size variants	HMWS	dimer	mAb DS stressed with 0.01N	CEX, SEC, SEC-MALS, icIEF, CE-SDS-LIF; Peptide mapping, disulfide mapping, and PTMs by RPLC-MS/MS	
		(trimer)	NaOH, 5D		
	LMWS	LMW1	mAb DS stressed at 65°C, 7D		
		LMW2			
	Acidic species		mAb DS stressed at 30°C for 2W in	Intact mass analysis by	
Charge	Charge variants Basic species		pH 4, pH 6, and pH 8	RPLC-MS, Cell-based potency assay.	
variants			mAb DS stressed at 65°C, 2D		
			In-process MMCF fractions	and FcRn binding by SPR	
Oxidation variants			mAb DS H ₂ O ₂ stressed		
Glycosylation variants			mAb DS/DP	Released glycan analysis by HILIC-FLD and Glycopeptide analysis by LC-MS/MS	

Characterization of PEGylated Variants

The PEGylation reaction may generate variants with modifications at undesired sites or result in the formation of multi-pegylated species. It is critical to localize and ensure the correct site of PEGylation. To achieve this, we performed MS analysis with a combination of in-source fragmentation (ISF) and higher-energy collision dissociation (HCD-MS/MS) on Glu-C digests of the pegylated cytokine. ISF generates peptide precursor ions with smaller PEG fragments, while MS/MS dissociates the peptide bonds, facilitating the localization of

peptide precursor ions with different numbers of EO units.

Fig. 3 Overlaid reversed phase UV chromatograms of control (black) and H_2O_2 -treated (blue) PEGylated cytokine. Inset: Zoomed view.

Fig. 4 Semi-Preparative HPLC Fractionation Workflow

Table 1 Characterization of oxidized variants by peptide mapping

Type of Variants	Observed MW (Da)	Δ MW (Da)	Oxidation Status	Oxidation Sites
Peak 1	40163.7	16	Single	Met ¹
Peak 2	40179.9	32	Double	Met ¹ , Met ¹³⁸
Peak 3	40180.1	32	Double	Met ¹ , Met ¹²⁷
Peak 4	40194.6	48	Triple	Met ¹ , Met ¹²⁷ , Met ¹³⁸

Fig. 6 (A) Overlaid SEC chromatograms of unfractionated mAb (black), and fractions of aggregate (blue), main peak (magenta), LMW1 (maroon), and LMW2 (dark blue) collected after stress at 65°C, 7D. (B) & (C) Overlaid non-reduced and reduced CE-SDS electropherograms of the monomer (main peak), LMW1, and LMW2 fractions, (D) Expected species following mAb hinge region fragmentation.

Fig. 5 Four parameter logistic (4-PL) fitting curves from cell-based potency assays of the PEGylated cytokine: (A) Unstressed, (B) H₂O₂ stressed, unfractionated, and (C) H₂O₂ stressed, fractionated Peak 4. The triply oxidized variant shows a relative potency of 60.7%, indicating a reduction of almost 40% compared to unstressed conditions.

Fig. 9 CEX-HPLC chromatogram of in-house IgG1 mAb showing acidic and basic product related variants.

Conclusions

Biotherapeutics commonly exhibit multiple variants. A thorough understanding of these variants gained through characterization, not only enhances product development but also ensures regulatory compliance and supports the improvement of manufacturing processes. continuous Ultimately, this contributes to the production of safe and effective biopharmaceuticals.

Reference:

1. Rauniyar N et al. Characterization of PEGylation sites in Neulasta and a biosimilar candidate with a combined fragmentation strategy in mass spectrometry analysis. J. of *Mass Spectrometry* **2024** (DOI: 10.1002/jms.5017)